Order Selection of the Linear Mixing Model for Complex-Valued FMRI Data

نویسندگان

  • Wei Xiong
  • Yi-Ou Li
  • Nicolle M. Correa
  • Xi-Lin Li
  • Vince D. Calhoun
  • Tülay Adali
چکیده

Functional magnetic resonance imaging (fMRI) data are originally acquired as complex-valued images, which motivates the use of complex-valued data analysis methods. Due to the high dimension and high noise level of fMRI data, order selection and dimension reduction are important procedures for multivariate analysis methods such as independent component analysis (ICA). In this work, we develop a complex-valued order selection method to estimate the dimension of signal subspace using information-theoretic criteria. To correct the effect of sample dependence to information-theoretic criteria, we develop a general entropy rate measure for complex Gaussian random process to calibrate the independent and identically distributed (i.i.d.) sampling scheme in the complex domain. We show the effectiveness of the approach for order selection on both simulated and actual fMRI data. A comparison between the results of order selection and ICA on real-valued and complex-valued fMRI data demonstrates that a fully complex analysis extracts more information about brain activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

A Non-radial Approach for Setting Integer-valued Targets in Data Envelopment Analysis

Data Envelopment Analysis (DEA) has been widely studied in the literature since its inception with Charnes, Cooper and Rhodes work in 1978. The methodology behind the classical DEA method is to determine how much improvements in the outputs (inputs) dimensions is necessary in order to render them efficient. One of the underlying assumptions of this methodology is that the units consume and prod...

متن کامل

Hybrid multi-criteria group decision-making for supplier selection problem with interval-valued Intuitionistic fuzzy data

The main objectives of supply chain management are reducing the risk of supply chain and production cost, increase the income, improve the customer services, optimizing the achievement level, and business processes which would increase ability, competency, customer satisfaction, and profitability. Further, the process of selecting the appropriate supplier capable of providing buyerchr('39')s re...

متن کامل

A Bayesian Variable Selection Approach Yields to Improved Brain Activation From Complex-Valued fMRI

Voxel fMRI time courses are complex-valued signals giving rise to magnitude and phase data. Nevertheless, most studies use only the magnitude signals and thus discard half of the data which could potentially contain important information. Statistical methods that make use of complex-valued fMRI (f(c)MRI) data have been shown to lead to superior power in detecting active voxels when compared to ...

متن کامل

An Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data

The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of signal processing systems

دوره 67 2  شماره 

صفحات  -

تاریخ انتشار 2012